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A Hamiltonian is described in which some degrees of freedom are represented by normal modes and the
remainder retain their complete couplings and anharmonicities. The classical equations of motion for this
Hamiltonian may be efficiently integrated in Cartesian coordinates. This Hamiltonian is used to study the
mode specificity of energy transfer in Ne-atom collisions with alkanethiolate chains and a monolayer of
n-hexyl thiolate chains self-assembled on{Aw1}. The intermolecular and intramolecular degrees of freedom

for these chain and self-assembled monolayer (SAM) systems are represented by normal modes. Collinear
collisions with n-hexyl andn-octadecyl thiolate chains show that only one mode is excited at low collision
energies. Mode specificity is also observed in Ne-atom collisions with the SAM. As expected from the adiabatic/
impulsive model ofT — V energy transfer, higher frequency modes of the chains and monolayer are excited
as the Ne-atom translational energy is increased. A comparison, between this normal mode model and an
anharmonic surface model, suggests it is efficient energy transfer to highly anharmonic modes of the surface
which give rise to the Boltzmann component in the translational energy distribution of the scattered Ne atoms.

I. Introduction transfer is expected. The contrary is expected when the collision
duration is long\®

To develop a complete and accurate model for stieh V
energy transfer processes requires determining the vibrational
mode(s) initially excited by the intermolecular interaction. At

systems and Hamiltonians are used for these studies. ForJOW ef‘ergies this may be done by transforming the (;artesian
molecular systems with a small number of atoms, internal coordinates and momenta, used for solving the classical equa-

coordinates are practical for solving the classical equation of tions of motion, to normal mode coordinates and momenta.

motion. However, as the number of atoms increases, they are-rhoug.h t.h's trapsfqrmgtlon IS qnly exact |n.the small displace-
ment limit2%-22 it still gives realistic results if the total energy

less appropriate due to the complexity of the kinetic energy . 3 - .
expression in an internal coordinate represent#tiéor large, IS not too Ialrgél. ngg orr:e fcl:nds the dlffedrence bletwe;:n ;otal_l
many-atom systems it is most convenient to solve the classicalSN€rgies calculated by the Cartesian and normal mode Hamil-

equations of motion in Cartesian coordinates. toni.a.ns is small. However, for the Poigh. e.nergies if‘ many
A particularly interesting question in molecular dynamics collisional Processes as C‘?Bland'SID, this IS n.o't a wabje

involves determining the mechanism(s) for collisional transla- approach for |de_nt|fy|ng the V|brat!onal modes initially exc_|ted.
tion-to-vibration (i.e.,T — V) energy transfef.This energy Because of the linear transzfzormatmn between the Cartesian and
transfer process is important for numerous systems including normal mogle coordinaté8, 22 high total.ene.rgles calcu!ated by
collision-induced dissociation (CID) and surface-induced dis- the Cartesian gnd normal mode Haml_ltonl_ans may differ by an
sociation (SID) of biological moleculés 0 energy transfer in order of mag_nltude or even more. _Th|s_ arises fr(_)m the normal
collisions of gases with surfacés?and friction forces at the mode potential energy, since the kinetic energy is the same for

. o 1s L
interfaces of sliding surfacés.For the latter, the energy transfer the two cqorcjlna}e systerd$2! If intramolecular V|br.aj[|onal
is from the translational motion of the sliding coordinate to the energy redistribution (IVRY does not occur for the collisionally

vibrational modes of the surfaces. Different models have been excited mqlecule, energie; in its individual r?ornjal modes may
advanced for describin§ — V in gas-phase and gasurface be determined by calculating the average km.etlc energy ,
collisions. Curvatures along an association/trapping reaction pathfOr each of the mo;jﬁé% and then approximating the mode’s
have been used to describe couplings between reagent relativ nergyEi b)_/ 2<Ti>. Ho_wever, for many molecular systems
translation and vibrations orthogonal to the reaction patt. R |s_rap|d at both h'gh gnd moderate energies, and
Resonance conditions are expected to facilitate this energyaveraglng <Ti> over time is not a proper approach for

transfert®~18 The concept of adiabaticity may also be used to determining a mode’s initial energy or its time evqlgtlon.
characterize the efficiency of — V energy transfel If the An alternative approach for studying both the efficiency and

duration of an A+ B collision, t, is short compared to the mode specificity of intermolecular energy transfer is to use a

period of the vibrational motion to be exciteg efficient energy ~ Hamiltonian in which a subset of the degrees of freedom are
represented by normal modes. Normal modes describe distinct

t Part of the special issue “William H. Miller Festschrift". vibrational motions and are a possible coordinate set to identify
* Author to whom correspondence should be addressed. pathways forT — V energy transfer. Though normal modes

Classical trajectories are widely used to determine atomic
motions for a wide variety of studies including both equilibrium
and nonequilibrium molecular dynamicésand chemical reaction
dynamics simulation$®> A variety of different coordinate
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are inadequate for describing intramolecular vibrational energy energy term in eq 2 is much smaller than the vibrational kinetic

redistribution (IVR)?* they may be useful for studying inter-  energyT, and it becomes a good approximation to identify this

molecular energy transfer processes which occur on a time-latter energy with the third term in eq 2; i.e.,

scale much shorter than that for IVR. However, to use normal

modes in classical trajectory simulations Df—~ V pathways 2T = z m§ (3)

requires constructing a classical Hamiltonian which includes T

normal mode coordinates for intramolecular vibrations and

nonnormal mode coordinates for the intermolecular degrees ofwhere, for simplicity, the subscript v is dropped frofp To

freedom of the interacting species. represent normal mode coordinates, it is convenient to use mass-
In the work presented here a Cartesian coordinate classicalyeighted Cartesian coordinatgsdefined byg = Jms. The

Hamiltonian, which represents a fraction of the degrees of \iprational kinetic energy then takes the simpler form
freedom as normal modes, is described. Normal mode coordi-

nates and the transformation between normal mode and Carte- oT — 2
sian coordinates are briefly reviewed in Section Il. In Section - Z !
Il strategies for integrating the Cartesian classical equations '

of motion are discussed for Hamiltonians in Wh'c.h aI_I the_ Often it is sufficient to assume a quadratic intramolecular
degrees of freedom are normal modes and for Hamiltonians in potential; i.e

which only a subset of the degrees of freedom are normal modes. T
In Section IV the latter type of Hamiltonian is used to study
mode-specific energy transfer in high energy collinear collisions V= z fiJQqu ®)
of Ne-atoms with alkanethiolates and in lower energy collisions L

of Ne-atoms with ax-hexyl thiolate self-assembled monolayer
(SAM). These applications are motivated by experimental an
computational studies of the efficiency bf~ V energy transfer
in CID®° and SIDP and the recent computational finding that
the Boltzmann component, in the translational energy distribu-
tion of Ne-atoms scattered off thehexyl thiolate SAM, does
not arise from trapping desorptiddThe work presented here
addresses the applicability of a normal mode model for studying Gi
collisional energy transfer and the role of mode specificity in
this transfer, and is summarized in Section V. q = Z 13 Qx (6)

(4)

gn matrix notation, the above expressions ToandV become

2T = qg and &/ = §fq, where the symbok denotes the
transpose anfl is a square B x 3n symmetric matrix of the
mass-weighted Cartesian force constdnt3hese expressions

for T and V are transformed to diagonal form by a linear
transformation between mass-weighted Cartesian coordinates
and normal mode coordinat€k,?® i.e.,

Il. Normal Mode Coordinates
The transformation between tlggand Q is written asq = L
Q. The inverse transformation from Cartesian to normal mode
coordinates is therefol® = L1 g, whereL ! is the inverse of
N m L, ie., L L~ equalsE the unity matrix. Since. is orthogonal,
E=T+V= Z —(F+V+ D)+ VY ez (D) L_‘l = L. With this transformation, botfl andV have only

& 2 diagonal components and are expressed as

The total energy of a polyatomic molecule, containing N
atoms, may be written as

where the coordinates are defined with respect to a space-fixed 2T=0QQ (7)

axis system. To separate translational, rotational, and vibrational

degrees of freedom, the coordinates of the atoms are definedand

with respect to a rotating axis system. The origin of this rotating N

system is the molecular center-of-mass. Using the Eckart (or 2Vv=QAQ (8)

Sayvetz) conditions to obtaif\Bindependent coordinates for

this rotating systerd®21the kinetic energyl in eq 1 becomes  WhereA is a diagonal matrix whose elements are the normal-
mode frequency parameteig = 4zr202vﬁ. These elements of

2T=MR* + z M(w x r)(w x )+ Z m& + A are the eigenvalues of tifematrix. The columns of are
T | eigenvectors and give the transformation from Cartesian to
Zw.z ms x § (2) normal mode coordinates. From the definition of momentéim,
: Qi is the momentun®; for normal mode.

whereM is the mass of the moleculs, is the instantaneous  Ill. Cartesian Classical Equations of Motion
displacement of thégh atom from its equilibrium position, and
w is the angular velocity of the rotating system. The first three
terms represent the pure translational, rotational, and vibrational
kinetic energies, whereas the last term is the coupling between 5 5
rotation and vibration; i.e., the Coriolis energy. To treat the H= Z (P +4,Q)/2 9)
vibrational and rotational motion of the molecule, the center- '
of-mass translational enerdyR2 may be set to zero and the
origin of the rotating axis system placed at the origin of the
space-fixed axis system without loss of generality.

If the angular velocityw of the rotating coordinate system is 12
small and the vibrational kinetic energy large, the Coriolis Q(t) = (2E/4;) " cospit + ) (10)

A. All Degrees of Freedom Are Normal ModesThe normal
mode HamiltoniarH is separable and given by

The time-dependence @ and Q may be found by solving
Newton’s equation of motion and are
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and

=Q(t) = —w;2E/A) " sint + )  (11)
wherew; = 2zv; and d; is the phase factor for mode The
time-dependence of the mass-weighted Cartesian coordinates
g and velocitiegy is then found from th&;(t) andQi(t) by the
linear transformation in eq 6. The resulting molecular angular

momentum, given by
J= z g x G
|

may not be zero and, if so, will vary with time. This is because
the Coriolis energy term in eq 2 is not included in representing
the molecule’s vibrational/rotational energy and is the origin
of the spurious angular momentum that arises in the transforma-
tion from normal mode to Cartesian coordinaté%' However,
since the angular velocity of the rotating coordinate system is
small, bothJ and the molecule’s rotational energy are small.
The value for this spurious angular momentum depends on
the normal mode(s) excited. There is no angular momentum if
a single normal mode is excited. The excitation of two normal
modes will contribute td in eq 12 if, according to group theory,
the “product” of their symmetry types contains external rota-
tion3? These effects are illustrated in Figure 1, for initial
conditions in which zero-point energy is added to the normal
modes of HO. There is no angular momentum when zero-point

Pi()

(12)

energy is added to the individual normal modes or simulta-
neously to the bend and symmetric stretch. Parts a, b, and ¢ of

Figure 1 illustrate, respectively, the effect of adding zero-point
energy to the asymmetric stretch and symmetric stretch, to the
asymmetric stretch and bend, and to all three normal modes.
For these excitation patterns, there is a time-dependent Cartesian
coordinate angular momentum and rotational energy. The latter

is calculated from

(13)

where wr, is the angular velocity of kD and not that of the

rotating coordinate system. For all cases the rotational energy
is small and at most constitutes less than one percent of the

total energy.

The time-dependence of the Cartesian coordinates and
g Figure 1. HO rotational energy, when the normal mode coordinates

velocities, associated with normal modes, may also be foun
by solving Hamilton’s equations of moti&h

9% _ 9H 9P _
ot op’ ot

— (14)
0q;

wherep; = ¢ is the mass-weighted Cartesian momentum for
coordinate. From eqs 10 and 11 and the linear transformation
between Cartesian and normal mode coordinates in eq 6, it i
straightforward to write the derivativels;/at anddpi/at. Using

the relationy p> = Y P? and the Hamiltonian in eq 9,
Hamilton’s equations of motion may also be expressed as

%

p (15)

and

(16)

Z_ElQJ ZlJJI
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and momenta of the normal mode Hamiltonian, eq 22, are transformed
to Cartesian coordinates and momenta, eq 16. The plots are for different
types of zero-point excitations: (a) - zpe in the asymmetric and
symmetric stretch; (b) - zpe in the asymmetric stretch and bend; and
(c) - all three modes are excited. The®harmonic frequencies are

w, = 1413 cm?, wss = 3614 cn?, andw,s = 3668 cntl.

Since eq 5 may be used to represent the potential engpdit,
ismay also be written as

p,
P ]z fiq

B. A Subset of the Degree of Freedom Are Normal Modes.
The above normal mode Hamiltonian may be used to study the
specificity of translation to vibrationT(— V) energy transfer
when two species collide. The normal mode Hamiltonian is used
to represent the intramolecular degrees of freedom of the
collision partners, while all couplings are included in the
intermolecular potential. Since this normal mode model does

17)
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not allow for rotation, it may not be use_d to study collisions Vibrational modes Frequency(cm'l)
which transfer angular momentum. Rotational angular momen-
tum and energy transfer may be included by using the complete
Hamiltonian in eq 2 and this more detailed model will be treated - - =
in future work. However, the nonrotating model has a variety M—8——C—C—C—C—C—C 160.3
of applications, including collinear collisions and collisions with
a surface, which are presented in the next section. This - s = - e
Hamiltonian, with a subset of the degrees of freedom as normal M—S—C—C—C—C—C—=C 4375
modes, may be illustrated by considering the collision of an
atom with a surface. The surface, consistingnoétoms, is —_. e e ————— - —
represented by the normal mode model andrthe 1 atom is M—S—C—C—C—C—C—C 6694
the colliding species. The Cartesian Hamiltonian for this system
is - - - —
M—S—C—C—C—C—C—C 936.5

3n 3n+3
H=3 Pl +2Q°@I2+ 5 2+ Ve (19 - - - —

= i=3m1 M—S—C—C—C—C—C—C 1187
wherep andq denote the B8 Cartesian coordinates and momenta - . —_
of the surface an¥iner is the intermolecular potential between  \j—s——c—C—C—C—C—C 1379
the n atoms of the surface and the colliding+ 1 atom. It is
often sufficient to represenYiner as a sum of two body I e -

potentials, only dependent on the distances between the surfacqy—g—— c—Cc—C—C—C—C 1495

atoms and the + 1 atom; i.e., ) . I .
Figure 2. Eigenvectors and vibrational frequencies (énfor the seven

n normal modes of vibration of the collinear'jg&-S— moiety.
Vinter = \Y (ri,n+1) (19)

The CH; and CH moieties are represented by Gnited-
atoms (UAs) with masses of 15 and 14 amus, respectively, to
For efficient numerical solution of the classical equation of form a collinear (Q¢—S chain attached to the center of a
motion, the normal mode Hamiltonian for the surface may be trigonal Ms plane. The M-atom was made sufficiently massive,

explicitly expressed in terms of Cartesian coordinates and i-€., 200000 amu, so that the J&-S—Ms moiety did not

momenta and, thus, eq 18 becomes acquire an appreciable velocity as a result of a collision with
the Ne-atom. The normal mode Hamiltonian for)¢& S—M3;
3n+3 3n was constructed using the same C, C—S, and SM stretching
H= pi2/2 + Z fiGiG/2 + Viner (20) force constants and equilibrium bond lengths used in the
1]

previous Ne-atom plus-hexyl thiolate SAM simulation&i.e.,
_ _ _ C—C, k = 4.86 andro = 1.53; C-S, k = 5.70 andr, = 1.82;
The classical equations of motion are eq 15 and and S-Au, k. = 2.80 andr, = 2.55, wherek, andr, are in
units of mdyn/A and A, respectively. The Cartesian force

op, _ il f Ninter o constants, eq 15, and eigenvectors and eigenvalues for the

_E_; i% o 1= 3n normal mode Hamiltonian are determined numerically by

: VENUS 34 The seven normal modes of vibrations, for the

M Ve collinear (C)s—S moiety, are depicted in Figure 2 along with
- = ,i=3n+1ton+3 (21) their vibrational frequencies. In ascending order, the frequencies
ot o are 62.0, 184.6, 303.3, 415.0, 519.6, 622.4, 727.3, 832.4, 934.7,

_ _ _ o 1032, 1123, 1206, 1281, 1347, 1404, 1450, 1487, 1513, 1528
At any time, during the course of the trajectory, the individual -1 for the (C)1s—S chain’s nineteen normal modes of
normal mode energies of the surface may be determined by,inration.

transforming the Cartesiap andp; to normal mode: andP. The two-body intermolecular potential between Ne and the

C' UA was determined previousy by ab initio calculations
for Ne—CH, and is excellently fit, for energies up t01000
In the work presented here, the above model is used to studykcal/mol, by
mode-specific energy transfer during direct, short-time collisions
of Ne with alkanethiolate chains and thénexyl thiolate SAM. V=ar?—birt+c¢ exp(-d) + f/r® (22)
The simulations are performed by adding the normal mode
Hamiltonian model to the chemical dynamics computer program with the fitted parameters given in ref 36. To represent very
VENUS 34 high energy Ne collisions, the ab initio calculations and fit were
A. Ne + Alkyl Thiolate Chains. Collinear Ne-atom colli- extended to greater than 10 000 kcal/mol to give the potential
sions with CH—(CH)s—S—M3; and CH—(CH;)17—S—M3; parametersy = 0.2172187 kcal/mol A2 b = 88.42075 kcal/
chains are simulated at collision energies ranging up to 2500 mol A ¢ = 88.42075 kcal/mold = 88.42075 A1, andf =
kcal/mol, to represent the high collision energies often used in 88.42075 kcal/mol R. These parameters are used for the
CID and SID experiment%;10 i.e., energies of 100 eV and trajectory results presented here.
more3> Collisional activation of excited electronic states is Calculations are performed for collinear Ne collisions with
possible at these high energies. The simulations reported herghe alkanethiolate chains using two different sets of initial
pertain to vibrational excitation of the ground electronic state. conditions. For one set no initial energy is added to the chain,

IV. Applications
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Figure 3. Fraction of the initial Ne translational energytransferred

to the alkanethiolate chain is given by the¢)(points and ) line.
Also plotted are the fractions of this transferred energy deposited in
the 4 modes receiving the most energy at IBw For (C)s—S—M3
these modes, identified by their frequencies (&mnare 160.3 (-®- -

); 437.5 (- 4--); 669.4 (- 2--); and 936.5 (- x- -). For (C)13—S—

M3 these modes are: 62.0 @--); 184.6 (- 4- -); 303.3 (- »- -); and
415.0 (- x- -). The initial conditions with and without zero-point energy
in the alkanethiolate chain given the same result.

so that it is in its classical potential energy minimum. Thus, for
eachk; there is only one unique trajectory. For the other set of
initial conditions, zero-point energy is added to the chain, with
random phases of the normal mode coordinates and morfenta.
A very important finding from these two sets of calculations is
that the initial condition without energy added to the alkanethi-
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Figure 4. Distribution of the final Ne atom translational energyfor
Ne + (C')e—S—Mj; collisions with zero-point energy in the alkanethi-
olate chain.

24 28

those for its inner and outer turning points, at which the amount
of energy transferred tends to be smallest and largest, respec-
tively.

At low values ofE; the energy transfer to the alkanethiolate
chain is very mode specific. This is shown in Figure 3, where
the fractions of the transferred energy deposited in the four
modes receiving most of the energy at |Bware plotted versus
log E;. For the smaller (Js—S—M3 chain andE; less than 30
kcal/mol, more than 90% of the energy is transferred to the
mode with the lowest frequency. For the largef){&-S—Ms
chain this type of mode-specific energy transfer is restricted to
energies less than 6 kcal/mol. &sis increased, more modes
become excited and there is less mode specificity. At the highest
energy, Ei 2500 kcal/mol, the average fractions of the
transferred energy deposited into 7 modes ¢f£€S—M3 and
19 modes of (§1s—S—Mzare 0.109, 0.284, 0.253, 0.112, 0.056,
0.172, and 0.015, and 0.053, 0.069, 0.095, 0.068, 0.037, 0.058,
0.094, 0.120, 0.129, 0.107, 0.054, 0.025, 0.040, 0.018, 0.018,

olate chain gives the same energy transfer to each mode as th®.007, 0.003, 0.001, and 0.000, respectively, for the frequencies

average found for the initial conditions with zero-point energy
added to the chain. In Figure 3 the average fractionEof
transferred to (§s—S—M3z and (C)1s—S—Ms is plotted versus
log E; for E; up to 2500 kcal/mol. For both chains this fraction

in ascending order. However, even at this highthere is still
some degree of mode selectivity.

The mode-specific energy transfer observed in these simula-
tions is very important and raises significant questions about

first increases, approaching unity, and then decreases beforehe dynamics of collisional energy transfer. Figure 3 shows that

increasing again. The distributid?(E) of the final Ne-atom
translational energp; is plotted in Figure 4 for the Ne- (C')e—
S—Mj3 collisions with zero-point energy artg in the range of

2 to 500 kcal/mol. FoE; greater than 500 and as large as 2500
kcal/mol, the shapes d?(E) are similar to the one foE;
500 kcal/mol.

At low E;, where the energy transfer is predominately to one
mode,P(E) is concave. However, with increaseinand more
modes becoming excited®(E) undergoes a transition to a
convex shape. The shape B({E) at low energy reflects the
probability distribution of the coordinate of the normal mode

at low collision energy the lowest frequency mode, whose
principal motion involves symmetric elongation/compression of
the alkanethiolate chain, receives most of the energy. As the
collision energy is increased, the remaining modes, in ascending
order based on their vibrational frequencies, become excited.
At the highest collision energy considered here, 2500 kcal/mol,
a number of the modes of both tmehexyl andn-octadecyl
chains are excited. However, as shown above, even for this high
energy collision, energy transfer to the modes is far from
democratic. The specific modes, receiving most of the energy,
depend on the modes’ atomic motions and frequencies. As the

which is excited. The coordinate’s most probable values are collision energy is increased, there is a tendency for excitation
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of higher frequency modes. It is noteworthy that the mode- 0.16 " T r . r ' T
specific collisional energy transfer found in these simulations 0.14 E = 5.0 kcal/mol
may assist in explaining a recent experimental finding of i P '
nonstatistical dissociation of collisionally activated 3t and 0.12 | : <Bp=1.76
CH3CH,SH* .38 | L e <Ep=1.33 |
B. Ne + n-Hexyl Thiolate SAM. The mode specificity of -_g i :
energy transfer in collisions of Ne atoms with thehexyl 4 0.08 }
thiolate SAM/AY 111} surface was studied by using the normal [ 0.06 | : N .
mode Hamiltonian to represent the surface’s vibrational degrees Lk
of freedom. The results of this simulation are also compared 0.04 i N I ]
with those obtained when the complete potential is used for 0.02 | .. .
the surface, instead of truncating this potential at the quadratic 0 P T )
terms. This complete surface potential was used in our previous 0 05 1 15 2 25 3 35 4
simulations of Ne andr-hexyl thiolate SAM/A§111} colli-
sions12.:36 0.25 v T T v
There have been extensive studies of energy transfer in 1ou E, = 20.0 keal/mol
collisions with organic liquids-3%-44 and self-assembled mono- 0.2 r <E>=5.30 1
layerd2:36:45and it is important to have a deeper understanding i <Ef:_2 94
of energy transfer in these systems. In collisions of Ne-atoms g 0.15 } (. ]
with liquid squalane, it is found that approximately 70% of the f; e
collision energy is transferred to the liquid at high collision ~ ® 01 L : 3 |
energies® A similar energy transfer efficiency is found ina ’
computer simulation of Ne-atom collisions witkhexyl thiolate
self-assembled on 4d11} 1236 The energy transfer distribution 0.05 r T
for collisions of Ne with both this SAM and liquid squalane,
may be similarly deconvoluted into a Boltzmann distribution 0
based on the surface temperature and a remaining high energy 0 2 4 6 8 10 12
componeng®4 The origin of the Boltzmann component is E, (kcal/mol)

particularly intriguing, since the simulations show a trapping
desorption intermediate is unimportant for the NeSAM
collisions!2 The statistical-like angular distributional of scattered
Ne atoms arises from the surface roughriéss the work
presented here, collisions of Ne-atoms with tHeexyl thiolate and the normal mode model described above.Er@qual to 5
SAM normal mode model are simulated, to see if the mode- kcal/mol, the two models give simil&(E) distributions. They
specific energy transfer dynamics provides insight into the origin are peaked at lovig;, with an average final Ne translational
of the Boltzmann component in the energy transfer distribution. energy that is 27 and 35% &f for the anharmonic and normal
The same surface model, with 35 alkanethiolate chains andmode models of the SAM, respectively. For the higheof 20
C' UAs for the CH and CH groups of the chain, were used kcal/mol, theP(E) distributions of the two models are quali-
here as in previous simulatio$6 of Ne + SAM/Au{111} tatively different. The normal mode model gives a broad, flat
collisions. The analytic potential energy function is also the same distribution of final energies while the anharmonic model
as used previously, and consists of terms for the SAM distribution is sharply peaked at ok with a long, small tail
intermolecular and intramolecular potentials, the/i interac- ~ at higherE;. This leads to a significantly lowEvalue (by a
tions, the interactions between Ne and the methyl and methylenefactor of 1.8) for the anharmonic model. The average final Ne
UAs of the SAM. The S-atoms of the chains are adsorbed on translational energy is 15 and 26% B for the anharmonic
hollow sites of a rigid A§11% surface. The resulting SAM and norm_al mod_e surface_ models, respectively. Both surface
monolayer forms a commensurate@( % \/§> R30° structure, models give an increase in the percent energy transfer to the
which has a 28tilt-angle between the All11} surface normal surface as is increased, the expected resalt.
and the backbone of the GITH,)sS moiety, in excellent The major difference between the results, for the two surface

agreement with experimefft?” (This surface model is depicted mgg:lss’ 'rsfatsgtrl?:gélv"’}lnugs d‘?‘rr]e Izﬁf];r:ggﬁ.k)cl? fqrr] ttr;]ee gorrrgile
in Figure 1 of ref 36). u - Including icity | u

- . . ) model is expected to have the greatest effect on the motions of
Initial conditions are chosen for the trajectories so that the

L ) s ¢ the low frequency interchain vibrational frequencies and the
incident Ne atoms are randomly aimed in the central unit area gma|lest effect on the higher frequency intramolecular vibrations
of the SAM surface. The initial velocity vectors of the Ne atoms ¢ the chains. Thus, the implication from this comparison of

are parallel with the 28tilt-angle of the alkanethiolate chains.  gnergy transfer for the two surface models is that it is efficient
No initial energy is added to the SAM, so that it is in its classical energy transfer to highly anharmonic interchain modes which
potential energy minimum. Previous calculatifisiave shown gives rise to the Boltzmann component irEf( This Boltzmann
that the results for this initial condition are similar to those with component is observed when the azimuthal angle of the beam
a quasiclassical 300 K Boltzmann distribution. Calculations are f Ne-atoms is chosen randomly to represent the situation where
performed with initial Ne translational energiEsof 5 and 20 the SAM domain on which the atoms collide is not speciffe.
kcal/mol. The calculations with the normal mode model give the amount
P(E) distributions, of the final translational energyof the of energy initially deposited in each vibrational mode of the
scattered Ne atoms, are compared in Figure 5 for the simulationsSAM by the Ne-atom collision. Figure 6 gives a scatter plot of
based on the anharmonic potential energy model for the 8AM the average enerd¥mogd deposited in a SAM vibrational mode

Figure 5. Distribution of the final Ne-atom translational energy
for E of 5 and 20 kcal/mol, and normal mode X and anharmonic
(- - -) models for the SAM surface.
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versus the mode’s vibrational frequency, for initial Ne-atom 2 0.2 | 4
translational energies of 5 and 20 kcal/mol. Ag; is increased, § 0.15 ¢ 1
modes with higher vibrational frequencies are excited, in accord W 0.1 | .
with the impulsive/adiabatic model @f— V energy transfef® 0.05 { .
However, somewhat surprisingly, the same five modes are most 0 0 o1 02 03 04 05 W 5.6

highly excited at botlE; of 5 and 20 kcal/mol. In ascending
frequency, these modes are 82.6, 132.6, 134.2, 135.1, and 136.3
cmL. If the next five most highly excited modes are considered, Figure 7. Distributions of energy deposited in the SAM’s most highly
one sees the trend to excite higher frequency modes &s excited modes=E;> is the average energy in the mode= 5.0 kcal/
increased. These five modes are 37.9, 56.8, 74.9, 132.0, andn°!-

132.5 cnr! atE; = 5.0 kcal/mol, and 132.0, 132.5, 133.5, 242.9,

and 360.8 cm! at E; = 20 kcal/mol. ForE; = 5.0 kcal/mol and then, after the collision, projecting the Cartesian coordinates
there is only one mode with a frequency greater than 15¢tcm and momenta onto the normal modes. This approach cannot be
appreciably excited and foE, = 20 kcal/mol there is no  used to identify the modes of the SAM initially excited. Because
appreciable excitation of modes with frequencies above 400 Of the linear transformation between Cartesian and normal mode

E e (kcal/mol)

cm L, coordinates, the SAM energies before and after this transforma-
The distributions of energy deposited in the five most highly tion are much different. The total normal mode energy fluctuates
excited modes are plotted in Figure 7 f6r= 5.0 kcal/mol. with time and is up to 510 times larger than that for the fully

Also given in this Figure are the average energies in each of anharmonic Hamiltonian. As discussed in the Introduction, this
the modes. Listed by ascending frequency, the average percents a well-known problem. In addition, because of IVR, the
energy transfers to these five modes are 2.3, 1.4, 2.3, 2.1, ancenergies in individual normal modes may not be determined
3.1 atE; = 5.0 kcal/mol and 2.5, 2.5, 2.7, 3.3, and 3.&at= by tracking their kinetic energies. This is shown in Figure 8,
20 kcal/mol. Each of these vibrational modes involves move- where the kinetic energy is plotted versus time for collisions
ment of the atoms in the central unit area of the SAM struck Wwith E; of 20 kcal/mol. The plots on the left, for the normal
by the Ne-atom. The predominant nature of the atomic motions mode Hamiltonian, show that the collision and excitation of
associated with these five modes are asymmetric bending ofthe mode require approximately 0.5 ps. The projected normal
the rows of alkanethiolate chains (82.6), CCC torsions and mode kinetic energies on the right, for the anharmonic Hamil-
wagging of central chains (132.6), CCC torsions (134.2), CCC tonian, are not periodic and exhibit energy transfer between
torsions (135.1), and CCC bending of central chains (136.3). normal modes. Though calculating the dynamics with the fully
Thus, the most highly excited modes consist of a varied range anharmonic Hamiltonian and projecting onto the normal mode
of motions. may not be used to determine the mode energies, this approach

A discussion was given in the Introduction of the merits of does show that only the low-frequency modes are excited, as
determining the mode specificity of the energy transfer by for the calculations with the normal mode Hamiltonian, and that
performing the dynamics with the fully anharmonic Hamiltonian IVR occurs between these modes.
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Figure 8. Plots of the kinetic energy versus time for the four SAM
modes most highly excited in the calculations with the normal mode
Hamiltonian. For the calculations with the fully anharmonic Hamilto-
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Yan and Hase

5. Energy transfer to the monolayer is compared for calcula-
tions with the normal mode and complete anharmonic models
for the intramolecular and intermolecular motions of the
monolayer. At lowE; the two models give similaiP(E)
distributions of the final Ne translational energy, which have a
peak inE; at low E;. For higherE;, P(E) retains the same form
for the anharmonic model, but becomes broad without a peak
for the normal mode model. For both low and high the
normal mode model gives a smaller probability for Ne-atoms
scattering from the monolayer with a small final translational
energyE:. This result suggests it is efficient energy transfer to
highly anharmonic modes of the monolayer which gives rise to
the Boltzmann component in the translational energy distribution
of the scattered Ne-atoms, as observed in previous trajectory
simulations!2-36

Finally, in future work it would be of interest to consider
several extensions of the work reported here. Instead of
expressing the normal mode Hamiltonian as a linear transforma-
tion between normal mode and Cartesian coordinates, it could
be expressed as a linear transformation between normal mode
and curvilinear internal coordinates, with the internal coordinates
written as analytic functions of Cartesian coordinates. It would
also be worthwhile to investigate how including separable
anharmonic terms in the normal mode potential energies affects
the efficiency of energy transfer.
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nian, the energies for the modes were determined by projecting onto

the normal mode coordinates and momeita= 20.0 kcal/mol and
Tmode IS in kcal/mol.

V. Summary

The following are the important findings from this work,

concerning the use of normal mode Hamiltonians for studying
collisional energy transfer and the energy transfer dynamics

associated with Ne-atom collisions witkhexyl thiolate chains.

1. A Hamiltonian may be constructed to study mode-specific
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