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A Hamiltonian is described in which some degrees of freedom are represented by normal modes and the
remainder retain their complete couplings and anharmonicities. The classical equations of motion for this
Hamiltonian may be efficiently integrated in Cartesian coordinates. This Hamiltonian is used to study the
mode specificity of energy transfer in Ne-atom collisions with alkanethiolate chains and a monolayer of
n-hexyl thiolate chains self-assembled on Au{111}. The intermolecular and intramolecular degrees of freedom
for these chain and self-assembled monolayer (SAM) systems are represented by normal modes. Collinear
collisions withn-hexyl andn-octadecyl thiolate chains show that only one mode is excited at low collision
energies. Mode specificity is also observed in Ne-atom collisions with the SAM. As expected from the adiabatic/
impulsive model ofT f V energy transfer, higher frequency modes of the chains and monolayer are excited
as the Ne-atom translational energy is increased. A comparison, between this normal mode model and an
anharmonic surface model, suggests it is efficient energy transfer to highly anharmonic modes of the surface
which give rise to the Boltzmann component in the translational energy distribution of the scattered Ne atoms.

I. Introduction

Classical trajectories are widely used to determine atomic
motions for a wide variety of studies including both equilibrium1

and nonequilibrium molecular dynamics2,3 and chemical reaction
dynamics simulations.4,5 A variety of different coordinate
systems and Hamiltonians are used for these studies. For
molecular systems with a small number of atoms, internal
coordinates are practical for solving the classical equation of
motion. However, as the number of atoms increases, they are
less appropriate due to the complexity of the kinetic energy
expression in an internal coordinate representation.6 For large,
many-atom systems it is most convenient to solve the classical
equations of motion in Cartesian coordinates.

A particularly interesting question in molecular dynamics
involves determining the mechanism(s) for collisional transla-
tion-to-vibration (i.e.,T f V) energy transfer.7 This energy
transfer process is important for numerous systems including
collision-induced dissociation (CID) and surface-induced dis-
sociation (SID) of biological molecules,8-10 energy transfer in
collisions of gases with surfaces,11,12 and friction forces at the
interfaces of sliding surfaces.2,3 For the latter, the energy transfer
is from the translational motion of the sliding coordinate to the
vibrational modes of the surfaces. Different models have been
advanced for describingT f V in gas-phase and gas-surface
collisions. Curvatures along an association/trapping reaction path
have been used to describe couplings between reagent relative
translation and vibrations orthogonal to the reaction path.13-15

Resonance conditions are expected to facilitate this energy
transfer.16-18 The concept of adiabaticity may also be used to
characterize the efficiency ofT f V energy transfer.19 If the
duration of an A+ B collision, tc, is short compared to the
period of the vibrational motion to be excited,tv, efficient energy

transfer is expected. The contrary is expected when the collision
duration is long.19

To develop a complete and accurate model for suchT f V
energy transfer processes requires determining the vibrational
mode(s) initially excited by the intermolecular interaction. At
low energies this may be done by transforming the Cartesian
coordinates and momenta, used for solving the classical equa-
tions of motion, to normal mode coordinates and momenta.
Though this transformation is only exact in the small displace-
ment limit,20-22 it still gives realistic results if the total energy
is not too large.23 Here one finds the difference between total
energies calculated by the Cartesian and normal mode Hamil-
tonians is small. However, for the high energies in many
collisional processes as CID8,9 and SID,10 this is not a viable
approach for identifying the vibrational modes initially excited.
Because of the linear transformation between the Cartesian and
normal mode coordinates,20-22 high total energies calculated by
the Cartesian and normal mode Hamiltonians may differ by an
order of magnitude or even more. This arises from the normal
mode potential energy, since the kinetic energy is the same for
the two coordinate systems.20,21 If intramolecular vibrational
energy redistribution (IVR)24 does not occur for the collisionally
excited molecule, energies in its individual normal modes may
be determined by calculating the average kinetic energy<Ti>
for each of the modes25 and then approximating the mode’s
energyEi by 2<Ti>.26 However, for many molecular systems
IVR is rapid at both high and moderate energies,24,27 and
averaging <Ti> over time is not a proper approach for
determining a mode’s initial energy or its time evolution.

An alternative approach for studying both the efficiency and
mode specificity of intermolecular energy transfer is to use a
Hamiltonian in which a subset of the degrees of freedom are
represented by normal modes. Normal modes describe distinct
vibrational motions and are a possible coordinate set to identify
pathways forT f V energy transfer. Though normal modes
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are inadequate for describing intramolecular vibrational energy
redistribution (IVR),24 they may be useful for studying inter-
molecular energy transfer processes which occur on a time-
scale much shorter than that for IVR. However, to use normal
modes in classical trajectory simulations ofT f V pathways
requires constructing a classical Hamiltonian which includes
normal mode coordinates for intramolecular vibrations and
nonnormal mode coordinates for the intermolecular degrees of
freedom of the interacting species.

In the work presented here a Cartesian coordinate classical
Hamiltonian, which represents a fraction of the degrees of
freedom as normal modes, is described. Normal mode coordi-
nates and the transformation between normal mode and Carte-
sian coordinates are briefly reviewed in Section II. In Section
III strategies for integrating the Cartesian classical equations
of motion are discussed for Hamiltonians in which all the
degrees of freedom are normal modes and for Hamiltonians in
which only a subset of the degrees of freedom are normal modes.
In Section IV the latter type of Hamiltonian is used to study
mode-specific energy transfer in high energy collinear collisions
of Ne-atoms with alkanethiolates and in lower energy collisions
of Ne-atoms with an-hexyl thiolate self-assembled monolayer
(SAM). These applications are motivated by experimental and
computational studies of the efficiency ofT f V energy transfer
in CID8,9 and SID10 and the recent computational finding that
the Boltzmann component, in the translational energy distribu-
tion of Ne-atoms scattered off then-hexyl thiolate SAM, does
not arise from trapping desorption.12 The work presented here
addresses the applicability of a normal mode model for studying
collisional energy transfer and the role of mode specificity in
this transfer, and is summarized in Section V.

II. Normal Mode Coordinates

The total energy of a polyatomic molecule, containing N
atoms, may be written as

where the coordinates are defined with respect to a space-fixed
axis system. To separate translational, rotational, and vibrational
degrees of freedom, the coordinates of the atoms are defined
with respect to a rotating axis system. The origin of this rotating
system is the molecular center-of-mass. Using the Eckart (or
Sayvetz) conditions to obtain 3N independent coordinates for
this rotating system,20,21 the kinetic energyT in eq 1 becomes

whereM is the mass of the molecule,si is the instantaneous
displacement of theith atom from its equilibrium position, and
ω is the angular velocity of the rotating system. The first three
terms represent the pure translational, rotational, and vibrational
kinetic energies, whereas the last term is the coupling between
rotation and vibration; i.e., the Coriolis energy. To treat the
vibrational and rotational motion of the molecule, the center-
of-mass translational energyMṘ2 may be set to zero and the
origin of the rotating axis system placed at the origin of the
space-fixed axis system without loss of generality.

If the angular velocityω of the rotating coordinate system is
small and the vibrational kinetic energy large, the Coriolis

energy term in eq 2 is much smaller than the vibrational kinetic
energyTv and it becomes a good approximation to identify this
latter energy with the third term in eq 2; i.e.,

where, for simplicity, the subscript v is dropped fromTv. To
represent normal mode coordinates, it is convenient to use mass-
weighted Cartesian coordinatesqi defined byqi ) xmisi. The
vibrational kinetic energy then takes the simpler form

Often it is sufficient to assume a quadratic intramolecular
potential; i.e.,

In matrix notation, the above expressions forT andV become
2T ) q3 q3 and 2V ) q̃fq, where the symbol∼ denotes the
transpose andf is a square 3n × 3n symmetric matrix of the
mass-weighted Cartesian force constantsfij. These expressions
for T and V are transformed to diagonal form by a linear
transformation between mass-weighted Cartesian coordinates
qi and normal mode coordinatesQk,28 i.e.,

The transformation between theqi andQk is written asq ) L
Q. The inverse transformation from Cartesian to normal mode
coordinates is thereforeQ ) L-1 q, whereL-1 is the inverse of
L, i.e.,L L-1 equalsE the unity matrix. SinceL is orthogonal,
L-1 ) L̃. With this transformation, bothT and V have only
diagonal components and are expressed as

and

whereΛ is a diagonal matrix whose elements are the normal-
mode frequency parametersλk ) 4π2c2νk

2. These elements of
Λ are the eigenvalues of thef matrix. The columns ofL are
eigenvectors and give the transformation from Cartesian to
normal mode coordinates. From the definition of momentum,29

Q̇i is the momentumPi for normal modei.

III. Cartesian Classical Equations of Motion

A. All Degrees of Freedom Are Normal Modes.The normal
mode HamiltonianH is separable and given by

The time-dependence ofQi and Q̇i may be found by solving
Newton’s equation of motion and are

E ) T + V ) ∑
i)1

N mi

2
(x̆i

2 + y̆i
2 + z̆i

2) + V(x1, y1, ‚‚‚, zN) (1)

2T ) MṘ2 + ∑
i

mi(ω × r i)‚(ω × r i) + ∑
i

mis̆i
2 +

2ω‚∑
i

misi × s3 i (2)

2T ) ∑
i

mis̆i
2 (3)

2T ) ∑
i

q̆i
2 (4)

2V ) ∑
i,j

fijqiqj (5)

qi ) ∑
k

likQk (6)

2T ) Q4 Q4 (7)

2V ) Q̃ Λ Q (8)

H ) ∑
i

(Pi
2 + λiQi

2)/2 (9)

Qi(t) ) (2Ei/λi)
1/2 cos(ωit + δi) (10)

2618 J. Phys. Chem. A, Vol. 105, No. 12, 2001 Yan and Hase



and

whereωi ) 2πνi and δi is the phase factor for modei. The
time-dependence of the mass-weighted Cartesian coordinates
qi and velocitiesq̆i is then found from theQi(t) andQ̇i(t) by the
linear transformation in eq 6. The resulting molecular angular
momentum, given by

may not be zero and, if so, will vary with time. This is because
the Coriolis energy term in eq 2 is not included in representing
the molecule’s vibrational/rotational energy and is the origin
of the spurious angular momentum that arises in the transforma-
tion from normal mode to Cartesian coordinates.30,31However,
since the angular velocity of the rotating coordinate system is
small, bothJ and the molecule’s rotational energy are small.

The value for this spurious angular momentum depends on
the normal mode(s) excited. There is no angular momentum if
a single normal mode is excited. The excitation of two normal
modes will contribute toJ in eq 12 if, according to group theory,
the “product” of their symmetry types contains external rota-
tion.32 These effects are illustrated in Figure 1, for initial
conditions in which zero-point energy is added to the normal
modes of H2O. There is no angular momentum when zero-point
energy is added to the individual normal modes or simulta-
neously to the bend and symmetric stretch. Parts a, b, and c of
Figure 1 illustrate, respectively, the effect of adding zero-point
energy to the asymmetric stretch and symmetric stretch, to the
asymmetric stretch and bend, and to all three normal modes.
For these excitation patterns, there is a time-dependent Cartesian
coordinate angular momentum and rotational energy. The latter
is calculated from

whereωm is the angular velocity of H2O and not that of the
rotating coordinate system. For all cases the rotational energy
is small and at most constitutes less than one percent of the
total energy.

The time-dependence of the Cartesian coordinates and
velocities, associated with normal modes, may also be found
by solving Hamilton’s equations of motion33

wherepi ) q̆i is the mass-weighted Cartesian momentum for
coordinatei. From eqs 10 and 11 and the linear transformation
between Cartesian and normal mode coordinates in eq 6, it is
straightforward to write the derivatives∂qi/∂t and∂pi/∂t. Using
the relation ∑ pi

2 ) ∑ Pi
2 and the Hamiltonian in eq 9,

Hamilton’s equations of motion may also be expressed as

and

Since eq 5 may be used to represent the potential energy,∂pi/∂t
may also be written as

B. A Subset of the Degree of Freedom Are Normal Modes.
The above normal mode Hamiltonian may be used to study the
specificity of translation to vibration (T f V) energy transfer
when two species collide. The normal mode Hamiltonian is used
to represent the intramolecular degrees of freedom of the
collision partners, while all couplings are included in the
intermolecular potential. Since this normal mode model does

Pi(t) ) Q̇i(t) ) -ωi(2Ei/λi)
1/2 sin(ωit + δi) (11)

J ) ∑
i

qi × q3 i (12)

Erot )
ωm‚J

2
(13)

∂qi

∂t
) ∂H

∂pi
,
∂pi

∂t
) - ∂H

∂qi
(14)

∂qi

∂t
) pi (15)

∂pi

∂t
) - ∑

j

λjQj

∂Qj

∂qi

) - ∑
j

λjl jiQj (16)

Figure 1. H2O rotational energy, when the normal mode coordinates
and momenta of the normal mode Hamiltonian, eq 22, are transformed
to Cartesian coordinates and momenta, eq 16. The plots are for different
types of zero-point excitations: (a) - zpe in the asymmetric and
symmetric stretch; (b) - zpe in the asymmetric stretch and bend; and
(c) - all three modes are excited. The H2O harmonic frequencies are
wb ) 1413 cm-1, wss ) 3614 cm-1, andwas ) 3668 cm-1.

∂pi

∂t
) ∑

j

fijqj (17)
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not allow for rotation, it may not be used to study collisions
which transfer angular momentum. Rotational angular momen-
tum and energy transfer may be included by using the complete
Hamiltonian in eq 2 and this more detailed model will be treated
in future work. However, the nonrotating model has a variety
of applications, including collinear collisions and collisions with
a surface, which are presented in the next section. This
Hamiltonian, with a subset of the degrees of freedom as normal
modes, may be illustrated by considering the collision of an
atom with a surface. The surface, consisting ofn atoms, is
represented by the normal mode model and then + 1 atom is
the colliding species. The Cartesian Hamiltonian for this system
is

wherep andq denote the 3n Cartesian coordinates and momenta
of the surface andVinter is the intermolecular potential between
the n atoms of the surface and the collidingn + 1 atom. It is
often sufficient to representVinter as a sum of two body
potentials, only dependent on the distances between the surface
atoms and then + 1 atom; i.e.,

For efficient numerical solution of the classical equation of
motion, the normal mode Hamiltonian for the surface may be
explicitly expressed in terms of Cartesian coordinates and
momenta and, thus, eq 18 becomes

The classical equations of motion are eq 15 and

At any time, during the course of the trajectory, the individual
normal mode energies of the surface may be determined by
transforming the Cartesianqi andpi to normal modeQi andPi.

IV. Applications

In the work presented here, the above model is used to study
mode-specific energy transfer during direct, short-time collisions
of Ne with alkanethiolate chains and then-hexyl thiolate SAM.
The simulations are performed by adding the normal mode
Hamiltonian model to the chemical dynamics computer program
VENUS.34

A. Ne + Alkyl Thiolate Chains. Collinear Ne-atom colli-
sions with CH3-(CH2)5-S-M3 and CH3-(CH2)17-S-M3

chains are simulated at collision energies ranging up to 2500
kcal/mol, to represent the high collision energies often used in
CID and SID experiments;8-10 i.e., energies of 100 eV and
more.35 Collisional activation of excited electronic states is
possible at these high energies. The simulations reported here
pertain to vibrational excitation of the ground electronic state.

The CH3 and CH2 moieties are represented by C′ united-
atoms (UAs) with masses of 15 and 14 amus, respectively, to
form a collinear (C′)6-S chain attached to the center of a
trigonal M3 plane. The M-atom was made sufficiently massive,
i.e., 200 000 amu, so that the (C′)6-S-M3 moiety did not
acquire an appreciable velocity as a result of a collision with
the Ne-atom. The normal mode Hamiltonian for (C′)6-S-M3

was constructed using the same C-C, C-S, and S-M stretching
force constants and equilibrium bond lengths used in the
previous Ne-atom plusn-hexyl thiolate SAM simulations;36 i.e.,
C-C, kr ) 4.86 andro ) 1.53; C-S, kr ) 5.70 andro ) 1.82;
and S-Au, kr ) 2.80 andro ) 2.55, wherekr and ro are in
units of mdyn/Å and Å, respectively. The Cartesian force
constants, eq 15, and eigenvectors and eigenvalues for the
normal mode Hamiltonian are determined numerically by
VENUS.34 The seven normal modes of vibrations, for the
collinear (C′)6-S moiety, are depicted in Figure 2 along with
their vibrational frequencies. In ascending order, the frequencies
are 62.0, 184.6, 303.3, 415.0, 519.6, 622.4, 727.3, 832.4, 934.7,
1032, 1123, 1206, 1281, 1347, 1404, 1450, 1487, 1513, 1528
cm-1 for the (C′)18-S chain’s nineteen normal modes of
vibration.

The two-body intermolecular potential between Ne and the
C′ UA was determined previously36 by ab initio calculations
for Ne-CH4 and is excellently fit, for energies up to∼1000
kcal/mol, by

with the fitted parameters given in ref 36. To represent very
high energy Ne collisions, the ab initio calculations and fit were
extended to greater than 10 000 kcal/mol to give the potential
parametersa ) 0.2172187 kcal/mol Å,12 b ) 88.42075 kcal/
mol Å,6 c ) 88.42075 kcal/mol,d ) 88.42075 Å-1, and f )
88.42075 kcal/mol Å.9 These parameters are used for the
trajectory results presented here.

Calculations are performed for collinear Ne collisions with
the alkanethiolate chains using two different sets of initial
conditions. For one set no initial energy is added to the chain,

H ) ∑
i)1

3n

[Pi
2(p) + λiQi

2
(q)]/2 + ∑

i)3n+1

3n+3

pi
2/2 + Vinter (18)

Vinter ) ∑
i)1

n

V (ri,n+1) (19)

H ) ∑
i)1

3n+3

pi
2/2 + ∑

i,j

3n

fijqiqj/2 + Vinter (20)

-
∂pi

∂t
) ∑

j)1

3n

fijqj +
∂Vinter

∂qi

, i e 3n

-
∂pi

∂t
)

∂Vinter

∂qi
, i ) 3n + 1 to 3n + 3 (21)

Figure 2. Eigenvectors and vibrational frequencies (cm-1) for the seven
normal modes of vibration of the collinear (C′)6-S- moiety.

V ) a/r12 - b/r6 + c exp(-dr) + f/r9 (22)
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so that it is in its classical potential energy minimum. Thus, for
eachEi there is only one unique trajectory. For the other set of
initial conditions, zero-point energy is added to the chain, with
random phases of the normal mode coordinates and momenta.37

A very important finding from these two sets of calculations is
that the initial condition without energy added to the alkanethi-
olate chain gives the same energy transfer to each mode as the
average found for the initial conditions with zero-point energy
added to the chain. In Figure 3 the average fraction ofEi

transferred to (C′)6-S-M3 and (C′)18-S-M3 is plotted versus
log Ei for Ei up to 2500 kcal/mol. For both chains this fraction
first increases, approaching unity, and then decreases before
increasing again. The distributionP(Ef) of the final Ne-atom
translational energyEf is plotted in Figure 4 for the Ne+ (C′)6-
S-M3 collisions with zero-point energy andEi in the range of
2 to 500 kcal/mol. ForEi greater than 500 and as large as 2500
kcal/mol, the shapes ofP(Ef) are similar to the one forEi )
500 kcal/mol.

At low Ei, where the energy transfer is predominately to one
mode,P(Ef) is concave. However, with increase inEi and more
modes becoming excited,P(Ef) undergoes a transition to a
convex shape. The shape ofP(Ef) at low energy reflects the
probability distribution of the coordinate of the normal mode
which is excited. The coordinate’s most probable values are

those for its inner and outer turning points, at which the amount
of energy transferred tends to be smallest and largest, respec-
tively.

At low values ofEi the energy transfer to the alkanethiolate
chain is very mode specific. This is shown in Figure 3, where
the fractions of the transferred energy deposited in the four
modes receiving most of the energy at lowEi are plotted versus
log Ei. For the smaller (C′)6-S-M3 chain andEi less than 30
kcal/mol, more than 90% of the energy is transferred to the
mode with the lowest frequency. For the larger (C′)18-S-M3

chain this type of mode-specific energy transfer is restricted to
energies less than 6 kcal/mol. AsEi is increased, more modes
become excited and there is less mode specificity. At the highest
energy, Ei ) 2500 kcal/mol, the average fractions of the
transferred energy deposited into 7 modes of (C′)6-S-M3 and
19 modes of (C′)18-S-M3 are 0.109, 0.284, 0.253, 0.112, 0.056,
0.172, and 0.015, and 0.053, 0.069, 0.095, 0.068, 0.037, 0.058,
0.094, 0.120, 0.129, 0.107, 0.054, 0.025, 0.040, 0.018, 0.018,
0.007, 0.003, 0.001, and 0.000, respectively, for the frequencies
in ascending order. However, even at this highEi, there is still
some degree of mode selectivity.

The mode-specific energy transfer observed in these simula-
tions is very important and raises significant questions about
the dynamics of collisional energy transfer. Figure 3 shows that
at low collision energy the lowest frequency mode, whose
principal motion involves symmetric elongation/compression of
the alkanethiolate chain, receives most of the energy. As the
collision energy is increased, the remaining modes, in ascending
order based on their vibrational frequencies, become excited.
At the highest collision energy considered here, 2500 kcal/mol,
a number of the modes of both then-hexyl andn-octadecyl
chains are excited. However, as shown above, even for this high
energy collision, energy transfer to the modes is far from
democratic. The specific modes, receiving most of the energy,
depend on the modes’ atomic motions and frequencies. As the
collision energy is increased, there is a tendency for excitation

Figure 3. Fraction of the initial Ne translational energyEi transferred
to the alkanethiolate chain is given by the (+) points and (-) line.
Also plotted are the fractions of this transferred energy deposited in
the 4 modes receiving the most energy at lowEi. For (C′)6-S-M3

these modes, identified by their frequencies (cm-1), are 160.3 (- -b- -
); 437.5 (- -(- -); 669.4 (- -4- -); and 936.5 (- -×- -). For (C′)18-S-
M3 these modes are: 62.0 (- -b- -); 184.6 (- -(- -); 303.3 (- -4- -); and
415.0 (- -×- -). The initial conditions with and without zero-point energy
in the alkanethiolate chain given the same result.

Figure 4. Distribution of the final Ne atom translational energyEf for
Ne + (C′)6-S-M3 collisions with zero-point energy in the alkanethi-
olate chain.
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of higher frequency modes. It is noteworthy that the mode-
specific collisional energy transfer found in these simulations
may assist in explaining a recent experimental finding of
nonstatistical dissociation of collisionally activated CH3SH+ and
CH3CH2SH+.38

B. Ne + n-Hexyl Thiolate SAM. The mode specificity of
energy transfer in collisions of Ne atoms with then-hexyl
thiolate SAM/Au{111} surface was studied by using the normal
mode Hamiltonian to represent the surface’s vibrational degrees
of freedom. The results of this simulation are also compared
with those obtained when the complete potential is used for
the surface, instead of truncating this potential at the quadratic
terms. This complete surface potential was used in our previous
simulations of Ne andn-hexyl thiolate SAM/Au{111} colli-
sions.12,36

There have been extensive studies of energy transfer in
collisions with organic liquids11,39-44 and self-assembled mono-
layers12,36,45and it is important to have a deeper understanding
of energy transfer in these systems. In collisions of Ne-atoms
with liquid squalane, it is found that approximately 70% of the
collision energy is transferred to the liquid at high collision
energies.44 A similar energy transfer efficiency is found in a
computer simulation of Ne-atom collisions withn-hexyl thiolate
self-assembled on Au{111}.12,36The energy transfer distribution
for collisions of Ne with both this SAM and liquid squalane,
may be similarly deconvoluted into a Boltzmann distribution
based on the surface temperature and a remaining high energy
component.36,44 The origin of the Boltzmann component is
particularly intriguing, since the simulations show a trapping
desorption intermediate is unimportant for the Ne+ SAM
collisions.12 The statistical-like angular distributional of scattered
Ne atoms arises from the surface roughness.12 In the work
presented here, collisions of Ne-atoms with then-hexyl thiolate
SAM normal mode model are simulated, to see if the mode-
specific energy transfer dynamics provides insight into the origin
of the Boltzmann component in the energy transfer distribution.

The same surface model, with 35 alkanethiolate chains and
C′ UAs for the CH3 and CH2 groups of the chain, were used
here as in previous simulations12,36 of Ne + SAM/Au{111}
collisions. The analytic potential energy function is also the same
as used previously, and consists of terms for the SAM
intermolecular and intramolecular potentials, the S-Au interac-
tions, the interactions between Ne and the methyl and methylene
UAs of the SAM. The S-atoms of the chains are adsorbed on
hollow sites of a rigid Au{111} surface. The resulting SAM
monolayer forms a commensurate (x3 × x3) R30° structure,
which has a 28° tilt-angle between the Au{111} surface normal
and the backbone of the CH3(CH2)5S moiety, in excellent
agreement with experiment.46,47(This surface model is depicted
in Figure 1 of ref 36).

Initial conditions are chosen for the trajectories so that the
incident Ne atoms are randomly aimed in the central unit area
of the SAM surface. The initial velocity vectors of the Ne atoms
are parallel with the 28° tilt-angle of the alkanethiolate chains.
No initial energy is added to the SAM, so that it is in its classical
potential energy minimum. Previous calculations12b have shown
that the results for this initial condition are similar to those with
a quasiclassical 300 K Boltzmann distribution. Calculations are
performed with initial Ne translational energiesEi of 5 and 20
kcal/mol.

P(Ef) distributions, of the final translational energyEf of the
scattered Ne atoms, are compared in Figure 5 for the simulations
based on the anharmonic potential energy model for the SAM36

and the normal mode model described above. ForEi equal to 5
kcal/mol, the two models give similarP(Ef) distributions. They
are peaked at lowEf, with an average final Ne translational
energy that is 27 and 35% ofEi for the anharmonic and normal
mode models of the SAM, respectively. For the higherEi of 20
kcal/mol, theP(Ef) distributions of the two models are quali-
tatively different. The normal mode model gives a broad, flat
distribution of final energies while the anharmonic model
distribution is sharply peaked at lowEf with a long, small tail
at higherEf. This leads to a significantly low〈Ef〉 value (by a
factor of 1.8) for the anharmonic model. The average final Ne
translational energy is 15 and 26% ofEi for the anharmonic
and normal mode surface models, respectively. Both surface
models give an increase in the percent energy transfer to the
surface asEi is increased, the expected result.36

The major difference between the results, for the two surface
models, is that lowEf values are less probable for the normal
mode surface model. Including anharmonicity in the surface
model is expected to have the greatest effect on the motions of
the low frequency interchain vibrational frequencies and the
smallest effect on the higher frequency intramolecular vibrations
of the chains. Thus, the implication from this comparison of
energy transfer for the two surface models is that it is efficient
energy transfer to highly anharmonic interchain modes which
gives rise to the Boltzmann component in P(Ef). This Boltzmann
component is observed when the azimuthal angle of the beam
of Ne-atoms is chosen randomly to represent the situation where
the SAM domain on which the atoms collide is not specified.12,36

The calculations with the normal mode model give the amount
of energy initially deposited in each vibrational mode of the
SAM by the Ne-atom collision. Figure 6 gives a scatter plot of
the average energy〈Emode〉 deposited in a SAM vibrational mode

Figure 5. Distribution of the final Ne-atom translational energyEf

for Ei of 5 and 20 kcal/mol, and normal mode (-) and anharmonic
(- - -) models for the SAM surface.
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versus the mode’s vibrational frequency, for initial Ne-atom
translational energiesEi of 5 and 20 kcal/mol. AsEi is increased,
modes with higher vibrational frequencies are excited, in accord
with the impulsive/adiabatic model ofT f V energy transfer.48

However, somewhat surprisingly, the same five modes are most
highly excited at bothEi of 5 and 20 kcal/mol. In ascending
frequency, these modes are 82.6, 132.6, 134.2, 135.1, and 136.3
cm-1. If the next five most highly excited modes are considered,
one sees the trend to excite higher frequency modes asEi is
increased. These five modes are 37.9, 56.8, 74.9, 132.0, and
132.5 cm-1 atEi ) 5.0 kcal/mol, and 132.0, 132.5, 133.5, 242.9,
and 360.8 cm-1 at Ei ) 20 kcal/mol. ForEi ) 5.0 kcal/mol
there is only one mode with a frequency greater than 150 cm-1

appreciably excited and forEi ) 20 kcal/mol there is no
appreciable excitation of modes with frequencies above 400
cm-1.

The distributions of energy deposited in the five most highly
excited modes are plotted in Figure 7 forEi ) 5.0 kcal/mol.
Also given in this Figure are the average energies in each of
the modes. Listed by ascending frequency, the average percent
energy transfers to these five modes are 2.3, 1.4, 2.3, 2.1, and
3.1 atEi ) 5.0 kcal/mol and 2.5, 2.5, 2.7, 3.3, and 3.8 atEi )
20 kcal/mol. Each of these vibrational modes involves move-
ment of the atoms in the central unit area of the SAM struck
by the Ne-atom. The predominant nature of the atomic motions
associated with these five modes are asymmetric bending of
the rows of alkanethiolate chains (82.6), CCC torsions and
wagging of central chains (132.6), CCC torsions (134.2), CCC
torsions (135.1), and CCC bending of central chains (136.3).
Thus, the most highly excited modes consist of a varied range
of motions.

A discussion was given in the Introduction of the merits of
determining the mode specificity of the energy transfer by
performing the dynamics with the fully anharmonic Hamiltonian

and then, after the collision, projecting the Cartesian coordinates
and momenta onto the normal modes. This approach cannot be
used to identify the modes of the SAM initially excited. Because
of the linear transformation between Cartesian and normal mode
coordinates, the SAM energies before and after this transforma-
tion are much different. The total normal mode energy fluctuates
with time and is up to 5-10 times larger than that for the fully
anharmonic Hamiltonian. As discussed in the Introduction, this
is a well-known problem. In addition, because of IVR, the
energies in individual normal modes may not be determined
by tracking their kinetic energies. This is shown in Figure 8,
where the kinetic energy is plotted versus time for collisions
with Ei of 20 kcal/mol. The plots on the left, for the normal
mode Hamiltonian, show that the collision and excitation of
the mode require approximately 0.5 ps. The projected normal
mode kinetic energies on the right, for the anharmonic Hamil-
tonian, are not periodic and exhibit energy transfer between
normal modes. Though calculating the dynamics with the fully
anharmonic Hamiltonian and projecting onto the normal mode
may not be used to determine the mode energies, this approach
does show that only the low-frequency modes are excited, as
for the calculations with the normal mode Hamiltonian, and that
IVR occurs between these modes.

Figure 6. Scatter plot of the average energy deposited in a SAM
vibrational mode versus the mode’s vibrational frequency.Emode is in
kcal/mol.

Figure 7. Distributions of energy deposited in the SAM’s most highly
excited modes.<Ef> is the average energy in the mode.Ei ) 5.0 kcal/
mol.
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V. Summary

The following are the important findings from this work,
concerning the use of normal mode Hamiltonians for studying
collisional energy transfer and the energy transfer dynamics
associated with Ne-atom collisions withn-hexyl thiolate chains.

1. A Hamiltonian may be constructed to study mode-specific
energy transfer in collisional processes by treating the internal
degrees of freedom of the colliding moieties as normal modes
and using the complete anharmonic potential to represent the
intermolecular interaction between these moieties. The classical
equations of motion for this Hamiltonian may be efficiently
integrated in Cartesian coordinates.

2. For low energy collinear collisions of Ne-atoms with the
n-hexyl andn-octadecyl thiolate chains, energy is preferentially
transferred to the lowest frequency mode. As the collision energy
Ei is increased, in succession and according to their frequencies,
higher frequency modes begin to become excited. At highEi

the energy transfer become less mode specific, but some mode
specificity remains forEi as large as 110 eV.

3. Energy transfer is also mode specific for collisions of the
Ne-atom with an-hexyl thiolate monolayer self-assembled on
Au{111}. The modes excited involve motions of atoms in the
area of the SAM struck by the Ne-atom. Excitation of higher
frequency modes becomes more important asEi is increased.
For both collisions with the alkyl chain and the SAM, the
specific modes excited depends on the modes’ atomic motions
and frequencies.

4. For Ei less or equal to 20 kcal/mol, the C-C stretching
modes of the monolayer are not excited. This indicates a united-
model is appropriate for representing the C-H stretching and
bending modes of the CH3 and CH2 moieties of the alkyl chain
for Ei in this energy range.

5. Energy transfer to the monolayer is compared for calcula-
tions with the normal mode and complete anharmonic models
for the intramolecular and intermolecular motions of the
monolayer. At low Ei the two models give similarP(Ef)
distributions of the final Ne translational energy, which have a
peak inEf at low Ef. For higherEi, P(Ef) retains the same form
for the anharmonic model, but becomes broad without a peak
for the normal mode model. For both low and highEi, the
normal mode model gives a smaller probability for Ne-atoms
scattering from the monolayer with a small final translational
energyEf. This result suggests it is efficient energy transfer to
highly anharmonic modes of the monolayer which gives rise to
the Boltzmann component in the translational energy distribution
of the scattered Ne-atoms, as observed in previous trajectory
simulations.12,36

Finally, in future work it would be of interest to consider
several extensions of the work reported here. Instead of
expressing the normal mode Hamiltonian as a linear transforma-
tion between normal mode and Cartesian coordinates, it could
be expressed as a linear transformation between normal mode
and curvilinear internal coordinates, with the internal coordinates
written as analytic functions of Cartesian coordinates. It would
also be worthwhile to investigate how including separable
anharmonic terms in the normal mode potential energies affects
the efficiency of energy transfer.
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